On the Hamming distance of linear codes over a finite chain ring

نویسندگان

  • Graham H. Norton
  • Ana Salagean
چکیده

Let R be a finite chain ring (e.g. a Galois ring), K its residue field and C a linear code over R. We prove that d(C), the Hamming distance of C, is d((C : α)), where (C : α) is a submodule quotient, α is a certain element of R and denotes the canonical projection to K. These two codes also have the same set of minimal codeword supports. We explicitly construct a generator matrix/polynomial of (C : α) from the generator matrix/polynomials of C. We show that in general d(C) ≤ d(C) with equality for free codes (i.e. for free Rsubmodules of R) and in particular for Hensel lifts of cyclic codes over K. Most of the codes over rings described in the literature fall into this class. We characterise MDS codes over R and prove several analogues of properties of MDS codes over finite fields. We compute the Hamming weight enumerator of a free MDS code over R.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Minimum Hamming Weight for Linear Codes

In this paper, we consider the minimum Hamming weight for linear codes over special finite quasi-Frobenius rings. Furthermore, we obtain minimal free $R$-submodules of a finite quasi-Frobenius ring $R$  which contain a linear code and derive the relation between their minimum Hamming weights. Finally, we suggest an algorithm that computes this weight using the Grobner basis and we show that und...

متن کامل

On the Hamming distance of linear codes over a nite chain ring

Let R be a finite chain ring (e.g. a Galois ring), K its residue field and C a linear code over R. We prove that d(C), the Hamming distance of C, is d((C : α)), where (C : α) is a submodule quotient, α is a certain element of R and denotes the canonical projection to K. These two codes also have the same set of minimal codeword supports. We explicitly construct a generator matrix/polynomial of ...

متن کامل

Repeated-root cyclic and negacyclic codes over a finite chain ring

We show that repeated-root cyclic codes over a finite chain ring are in general not principally generated. Repeated-root negacyclic codes are principally generated if the ring is a Galois ring with characteristic a power of 2. For any other finite chain ring they are in general not principally generated. We also prove results on the structure, cardinality and Hamming distance of repeated-root c...

متن کامل

Repeated-root cyclic and negacyclic codes over a nite chain ring

We show that repeated-root cyclic codes over a finite chain ring are in general not principally generated. Repeated-root negacyclic codes are principally generated if the ring is a Galois ring with characteristic a power of 2. For any other finite chain ring they are in general not principally generated. We also prove results on the structure, cardinality and Hamming distance of repeated-root c...

متن کامل

On the Lattice of Cyclic Linear Codes Over Finite Chain Rings

Let R be a commutative finite chain ring of invariants (q ,s ). In this paper, the trace representation of any free cyclic R -linear code of length l, is presented, via the q -cyclotomic cosets modulo l, when gcd(l,q ) = 1. The lattice Cy(R,l);+,∩ of cyclic R -linear codes of length l, is investigated. A lower bound on the Hamming distance of cyclic R -linear codes of length l , is established....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2000